[1] J.X. Xu, P.F. Wang, Z.Y. Bai, H.H. Chen, R.Z. Wang, L.T. Qu,
T.X. Li*. Sustainable moisture energy.
Nature Reviews Materials (2024) (IF=83.5).
https://doi.org/10.1038/s41578-023-00643-0
(*Corresponding Author)
Selected as Cover Article
Selected as Featured Article
Selected as Research Highlights by NSFC
[2] P.F. Wang,
T.X. Li*. Electricity generated from upstream proton diffusion.
Nature Nanotechnology (2024).
https://doi.org/10.1038/s41565-024-01713-2
(*Corresponding Author)
[3]
T.X. Li‡,*, T.S. Yan, P.F. Wang, J.X. Xu, X.Y. Huo, Z.Y. Bai, W. Shi, G.H. Yu, R.Z. Wang. Scalable and efficient solar-driven atmospheric water harvesting enabled by bidirectionally aligned and hierarchically structured nanocomposites.
Nature Water 1 (2023) 971-981.
https://doi.org/10.1038/s44221-023-00150-0
(*Corresponding Author and ‡First Author)
Selected as Research Highlights by NSFC
[4]
T.X. Li‡,*, M.Q. Wu, J.X. Xu, R.X. Du, T.S. Tan, P.F. Wang, Z.Y. Bai, R.Z. Wang, S.Q. Wang. Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting.
Nature Communications 13 (2022) 6771:1-11.
https://doi.org/10.1038/s41467-022-34385-4
(*Corresponding Author and ‡First Author)
Selected as Research Highlights by Disruptive Technology Letters
[5] Y.G. Jing, Z.C. Zhao, X.L. Cao, Q.R. Sum, Y.P. Yuan,
T.X. Li*. Ultraflexible, cost-effective and scalable polymer-based phase change composites via chemical cross-linking for wearable thermal management.
Nature Communications 14 (2023) 8060:1-12.
https://doi.org/10.1038/s41467-023-43772-4
(*Co-corresponding Author)
[6] Z.L. Liu, J.X. Xu, M. Xu, C.F. Huang, R.Z. Wang,
T.X. Li*, X.L. Huai. Ultralow-temperature-driven water-based sorption refrigeration enabled by low-cost zeolite-like porous aluminophosphate.
Nature Communications 13 (2022) 193:1-10.
https://doi.org/10.1038/s41467-021-27883-4
(*Co-corresponding Author)
Selected as Editors' Highlights
[7] C.Y. Guo, H.J. Tang, P.F. Wang, Q.H. Xu, H.D. Pan, X.Y. Zhao, F. Fan,
T.X. Li*, D.L. Zhao. Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting.
Nature Communications 15 (2024) 6100: 1-9.
https://doi.org/10.1038/s41467-024-50396-9
(*Co-corresponding Author)
[8] S. Wu,
T.X. Li. Electrochemical refrigeration-taking control of salts.
Nature Energy 8 (2023) 226-227.
https://doi.org/10.1038/s41560-023-01219-6
[9] J.X. Xu,
T.X. Li‡,*, T.S. Tan, S. Wu, M.Q. Wu, J.W. Chao, X.Y. Huo, P.F. Wang, R.Z. Wang. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent.
Energy & Environmental Science 14 (2021) 5979-5994.
https://doi.org/10.1039/D1EE01723C
(*Corresponding Author and ‡Co-first Author)
Selected as ESI Highly Cited Paper
Selected as ESI Hot Paper
Selected as ESI Highly Cited Paper of Royal Society of Chemistry
[10] J.X. Xu, X.Y. Huo. T.S. Yan, P.F. Wang, Z.Y. Bai, J.W. Chao, R.G. Yang, R.Z. Wang,
T.X. Li*. All-in-one hybrid atmospheric water harvesting for all-day water production by natural sunlight and radiative cooling.
Energy & Environmental Science (2024).
https:// doi.org/10.1039/D3EE04363K
(*Corresponding Author)
Selected as Cover Article
[11] S. Wu,
T.X. Li‡,*, Z. Tong, J.W. Chao, T.Y. Zhai, J.X. Xu, T.S. Yan, M.Q. Wu, Z.Y. Xu, H. Bao, T. Deng, R.Z. Wang. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting.
Advanced Materials 31(2019) 1905099:1-9.
https://doi.org/10.1002/adma.201905099
(*Corresponding Author and ‡Co-first Author)
Selected as ESI Highly Cited Paper
[12] J.X. Xu,
T.X. Li‡,*, J.W. Chao, S. Wu, T.S. Yan, W.C. Li, B.Y. Cao, R.Z. Wang. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt.
Angewandte Chemie-International Edition 59 (2020) 2-11.
https://doi.org/10.1002/anie.201915170
(*Corresponding Author and ‡Co-first Author)
Selected as ESI Highly Cited Paper
[13]
T.X. Li‡,*, M.Q. Wu, S. Wu, J.W. Chao, S.Z. Xiang, J.X. Xu, J.W. Chao, T.S. Yan, T. Deng, R.Z. Wang. Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage.
Nano Energy 89 (2021) 106338:1-11.
https://doi.org/10.1016/j.nanoen.2021.106338
(*Corresponding Author and ‡Co-first Author)
Selected as ESI Highly Cited Paper
[14] M.Q. Wu, S. Wu, Y.F. Cai, R.Z. Wang,
T.X. Li*. Form-stable phase change composites: preparation, performance, and applications for thermal energy conversion, storage and management.
Energy Storage Materials 42 (2021) 380-417.
https://doi.org/10.1016/j.ensm.2021.07.019
(*Corresponding Author)
Selected as ESI Highly Cited Paper
[15] J.X. Xu, J.W. Chao,
T.X. Li‡,*, T.S. Yan, S. Wu, M.Q. Wu, B.C. Zhao, R.Z. Wang. Near-zero-energy smart battery thermal management enabled by sorption energy harvesting from air.
ACS Central Science 6 (2020) 1542-1554.
https://dx.doi.org/10.1021/acscentsci.0c00570
(*Corresponding Author and ‡Co-first Author)
Selected as Cover Paper
[16] S. Wu,
T.X. Li‡,*, M.Q. Wu, J.X. Xu, Y.H. Hu, J.W. Chao, T.S. Yan, R.Z. Wang. Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management.
Journal of Materials Chemistry A 8 (2020) 20011-20020.
https://doi.org/10.1039/D0TA05904H
(*Corresponding Author and ‡Co-first Author)
Selected as ESI Highly Cited Paper
[17] T.S. Yan,
T.X. Li‡,*, J.X. Xu, J.W. Chao, R.Z. Wang, Yuri Aristov, L. Gordeeva, P. Dutta, S. Murthy. Ultrahigh-energy-density sorption thermal battery enabled by graphene aerogel-based composite sorbents for thermal energy harvesting from air.
ACS Energy Letters 6 (2021) 1795-1802.
https://doi.org/10.1021/acsenergylett.1c00284
(*Corresponding Author and ‡Co-first Author)
[18] M.Q. Wu,
T.X. Li‡,*, P.F. Wang, S. Wu, R.Z. Wang, J. Lin. Dual-encapsulated highly conductive and liquid-free phase change composites enabled by polyurethane/graphite nanoplatelets hybrid networks for efficient energy storage and thermal management.
Small 2105647 (2021) 1-10.
https://doi.org/10.1002/smll.202105647
(*Corresponding Author)
[19] S. Wu,
T.X. Li*, Z.Y. Zhang, T. Li, R.Z. Wang. Photoswitchable phase change materials for unconventional thermal energy storage and upgrade.
Matter 4 (2021) 3385-3399.
https://doi.org/10.1016/j.matt.2021.09.017
(*Corresponding Author)
[20] P.F. Wang, J.X. Xu, R.Z. Wang,
T.X. Li*. Emerging self-sustained electricity generation enabled by moisture.
Matter 6 (2023) 19-22.
https://doi.org/10.1016/j.matt.2022.12.007
(*Corresponding Author)
[21] S. Wu, X. Zhang, R.Z. Wang,
T.X. Li*. Progress and perspectives of liquid metal battery.
Energy Storage Materials 57 (2023) 205-227.
https://doi.org/10.1016/j.ensm.2023.02.021
(*Corresponding Author)
[22] S. Wu, Z.Y. Zhang, T. Li, R.Z. Wang,
T.X. Li*. Optically-controlled variable-temperature storage and upgrade of thermal energy by photoswitchable phase change materials.
ACS Materials Letters 5 (2023) 2019-2027.
https://doi.org/10.1021/acsmaterialslett.3c00351
(*Corresponding Author)
[23] Z.Y. Bai, P.F. Wang, J.X. Xu, R.Z. Wang,
T.X. Li*. Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: materials, devices, and systems.
Science Bulletin 69 (2024) 671-687.
(*Corresponding Author).
https://doi.org/10.1016/j.scib.2023.12.018
[24] X. Zhang, S. Wu, K.Y. Tang, Y.B Xu, Y.H. Tang, Y.B. Ma,
T.X. Li*. A biomimetic melting-evaporation cooling bilayer for efficient thermal management of ultrafast-cycling batteries.
Energy Storage Materials 71 (2024) 103602.
https://doi.org/10.1016/j.ensm.2024.103602
(*Co-corresponding Author)
[25]
T.X. Li‡,*, R.Z. Wang, H. Li. Progress in the development of solid-gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy.
Progress in Energy and Combustion Science 40 (2014) 1-58.
http://dx.doi.org/10.1016/j.pecs.2013.09.002
(*Corresponding Author and ‡First Author)